RESEARCH MEMORANDUM ALTITUDE PERFORMANCE AND OPERATIONAL CHARACTERISTICS OF AN XT38-A-2 TURBOPROP ENGINE By R. H. Essig and F. W. Schulze Lewis Flight Propulsion Laboratory Cleveland, Ohio # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON March 12, 1954 Declassified January 7, 1958 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # RESEARCH MEMORANDUM ALTITUDE PERFORMANCE AND OPERATIONAL CHARACTERISTICS OF AN XT38-A-2 TURBOPROP ENGINE By R. H. Essig and F. W. Schulze # SUMMARY The over-all engine performance and the starting and windmilling characteristics of an XT38-A-2 turboprop engine have been investigated in the NACA Lewis altitude wind tunnel. The simulated flight conditions ranged from altitudes of 5000 to 45,000 feet at a flight Mach number of 0.30 and from Mach numbers of 0.301 to 0.557 at an altitude of 35,000 feet. The engine, equipped with a standard-area exhaust nozzle, was operated with independent control of fuel flow and propeller pitch; operation was thereby allowed over a wide range of engine conditions. Windmilling characteristics were obtained at altitudes of 15,000 and 35,000 feet. Analysis of the performance maps obtained at each flight condition revealed that both altitude and flight Mach number had a major effect on corrected engine variables. The large reductions in corrected shaft horsepower occurring when the altitude was increased were the result of decreases in compressor and turbine efficiencies. Windmilling engine starts were made at altitudes as high as 35,000 feet at an engine speed of 2000 rpm. # INTRODUCTION An investigation of the performance of an XT38-A-2 turboprop engine over a range of simulated altitude conditions has been conducted in the NACA Lewis altitude wind tunnel. Steady-state engine performance, component performance, and starting and windmilling characteristics, as well as the dynamics of the engine, were studied. Reported herein are the over-all engine performance and the starting and windmilling characteristics. The simulated flight conditions ranged from altitudes of 5000 to 45,000 feet at an average flight Mach number of 0.30 and from Mach numbers of 0.301 to 0.557 at an altitude of 35,000 feet. A standard exhaust nozzle having an area of 244 square inches was used. Independent control of propeller and fuel flow permitted operation at various engine speeds over a wide range of turbine-inlet temperature. Engine windmilling characteristics at various airspeeds and blade angles were obtained at altitudes of 15,000 and 35,000 feet. Data are presented in the form of performance maps at each flight condition to show the effects of altitude and flight Mach number on various engine-performance variables. The effect of engine deterioration with operating time on performance is also discussed. All symbols used in this report are defined in appendix A. # APPARATUS # Description of Engine The main components of the engine include a 19-stage axial-flow compressor, eight cylindrical combustion chambers, a four-stage turbine, an exhaust cone, and a planetary reduction-gear assembly with a 12.5:1 gear ratio. The engine was fitted for this investigation with a three-blade propeller, 13 feet in diameter. The maximum diameter of the flight engine mount is $37\frac{1}{2}$ inches; the length from the foremost end of the propeller shaft to the exhaust-nozzle outlet is 157 inches. The net dry weight of the engine including power section, gearbox, control, torquemeter, and flight frame, but without propeller, is approximately 1660 pounds. The exhaust-nozzle-outlet area is 244 square inches. The operating limits of the engine as established by the manufacturer are: | Operating condition | | Turbine-inlet
temperature,
OR | | |--|--------|-------------------------------------|----------------------------| | Military
100 percent normal power
80 percent normal power
60 percent normal power | 14,300 | 1840 | 30
None
None
None | At military operating conditions, the nominal static sea-level rating is 2520 shaft horsepower and a jet thrust of 603 pounds. The engine air flow is approximately 30 pounds per second. The aerodynamic design point of the engine is at an altitude of 15,000 feet and a flight Mach number of 0.347. # Installation and Instrumentation The altitude wind tunnel is a closed-circuit, return-type tunnel circular in cross section with a test section 20 feet in diameter and 40 feet long. As shown in figure 1, the engine was mounted on a thin wing section spanning the test section. Desired air velocities through the tunnel test section are provided by a variable-pitch 18-blade fan driven by an 18,000-horsepower electric motor. The installation was streamlined by providing a cowling about the entire engine, a wooden lip at the inlet-air duct, and a conical fairing for the propeller hub region. A view of the engine showing the location of the components and the measuring stations is shown in figure 2. Schematic diagrams of the instrumentation at six of the stations are given in figure 3. six parallel control thermocouples at the turbine-inlet area were installed to produce a single indication of turbine-inlet temperature. The air flow was determined from measurements at station 1 and was checked at stations 1 and 2. Air leakages occurring in various sections of the engine were measured when possible or were assumed to be a percentage of the inlet-air flow. These leakages are described in appendix B. Water-filled manometers were used to measure pressures at every station except the compressor outlet and turbine inlet, where mercury-filled manometers were used. Iron-constantan thermocouples were used in the measurement of engine-inlet and compressor-outlet air temperatures; chromel-alumel thermocouples were used in the measurement of turbine-inlet and exhaust-nozzle gas temperatures. All temperatures were automatically recorded with self-balancing potentiometers. A stroboscopic tachometer, in conjunction with a continuously indicating tachometer, measured engine speed. Torque was measured by a magnetic pickup-type torquemeter, which sensed the torsional deflection of the shaft between the power section and the reduction gearbox. This torsional deflection was measured electronically and indicated on a milliammeter. To determine contamination of tunnel air induced by the engine exhaust, an oxygen analyzer, employing the standard thermal-conductivity method to determine the oxygen content of gas, was used to sample the air at the entrance of the inlet duct. A slip ring on the propeller shaft and a slide-wire arrangement on one of the three blades indicated propeller-blade angle on a milliammeter. # PROCEDURE Independent control of propeller pitch and fuel flow was used to obtain data over a range of power (turbine-inlet temperature) at each of several engine speeds ranging from about 92 to 104 percent of rated speed. To eliminate inlet-duct losses from the engine performance, the tunnel test-section velocity was set to give the desired ram-pressure ratio based on compressor-inlet total pressure and free-stream static pressure. The methods used to compute the engine-performance variables are included in appendix B. The initial 20 hours of engine operation at altitude were used to determine the vibration characteristics of the propeller. Data from this period of the investigation will not be presented. Regular engine-performance data were obtained during the next 85 hours of engine time. To aid in explaining any inconsistencies in data due to deterioration, which has been found to be an important factor in some turboprop engines (ref. 1), and data irregularities due to changes in components during the program, the order of performance tests is given in the following table: | Engine time, | Data obta | ained at: | | | | | |---|---|-------------------------------|--|--|--|--| | hr | Altitude,
ft | Flight Mach
number | | | | | | 20-25
33-40
40-47
47-59
60-82 | 25,000
35,000
35,000
35,000
5,000 | 0.291
.301
.438
.557 | | | | | | 83 | Turbine-ass | sembly change | | | | | | 91-96
96-105 | 45,000
15,000 | 0.294
.303 | | | | | The turbine labyrinth seal was found damaged at about 83 hours engine time; performance obtained after that time was with a new turbine section. At an altitude of 25,000 feet and a flight Mach number of 0.30, a given engine condition was run approximately every 10 hours to check engine and component deterioration. Engine windmilling characteristics were obtained for a range of propeller-blade angle at the following altitudes and airspeeds: | | Altitude,
ft | True | airs;
knots | | |-----|-----------------|------|----------------|-----| | | 15,000 | | 110, | | | 444 | 35,000 | 115, | 165, | 215 | During the investigation, engine-inlet temperatures were maintained as near to NACA standard altitude conditions as facility limits allowed. In general, engine-inlet temperature ranged from 80° to -30° F for steady-state running. By precooling the tunnel, engine starting characteristics were obtained at temperatures as low as -50° F. Fuel used during the investigation was clear gasoline having a lower heating value of 18,925 Btu per pound and a hydrogen-carbon ratio of 0.182. Several types of lubricating oil were used during the investigation to lubricate both the gearbox and power section. The types used are designated PRL 3313, PRL 3161, and EEL 3A, all of which were approved by the engine manufacturer. #### RESULTS AND DISCUSSION # Performance Characteristics Inlet-air flow. - At the start of the investigation, a study was made of the flow conditions of the air entering the compressor inlet. The pressures indicated by the four rakes at station 2 showed the flow through the duct and around the shaft to be fairly
uniform radially and circumferentially. Total pressures at the bottom rake were about 1 percent lower than the average inlet pressure. Data indicated by the oxygen analyzer showed that the oxygen content of the engine-inlet air never reached a value below 19.5 percent as compared with standard conditions of 20.9 percent. Generalized performance. - All the engine-performance data in both corrected and uncorrected form are presented in table I. Data typical of those obtained at all the various flight conditions are presented in figures 4 and 5 for an altitude of 15,000 feet and a flight Mach number of 0.303. Variation of corrected turbine-inlet temperature, corrected jet thrust, and specific fuel consumption with corrected shaft horsepower at seven engine speeds is shown in figure 4. In varying engine speed at a constant corrected turbine-inlet temperature (fig. 4), a maximum shaft horsepower is reached. At the military-rated corrected turbine-inlet temperature of 2060° R, an increase in corrected engine speed from 13,690 to 15,270 rpm varied the corrected shaft horsepower from 2460 horsepower at 13,690 rpm to a maximum of 2570 horsepower at 14,600 rpm. For the same conditions, corrected jet thrust increased from 555 to 660 pounds and specific fuel consumption increased from 0.65 to 0.68 pound of fuel per shaft horsepower per hour. The effect of corrected engine speed on corrected air flow is shown in figure 5. There did not appear to be any effect of turbine-inlet temperature level on corrected air flow. The air flow at the rated corrected engine speed of 14,300 rpm was 29.35 pounds per second. Cross plotting of the engine-performance parameters of figure 4 for each flight condition provided the engine-performance maps presented in figure 6 for the seven flight conditions investigated. In these maps, corrected shaft horsepower is plotted against corrected engine speed for constant values of corrected turbine-inlet temperature, corrected jet thrust, and specific fuel consumption. From these maps the performance at any engine operating condition can be determined for each flight condition investigated. In general, the maximum corrected horsepower at a fixed corrected turbine-inlet temperature occurred at corrected engine speeds between 13,200 and 14,800 rpm, depending on flight condition and level of turbine-inlet temperature. As corrected engine speed increased, there was, however, a continuous increase in both corrected jet thrust and specific fuel consumption for any given corrected turbine-inlet temperature. As can be seen from these maps, at a flight Mach number of 0.30, performance at an altitude of 15,000 feet is generally better than at 5,000 feet and performance at 45,000 feet is better than at 35,000 feet altitude. These comparisons are inconsistent with the performance trends for the other flight conditions, which show the conventional performance deterioration as altitude was increased. The apparent discrepancy can be explained by the manner in which the engine performance was affected by the aforementioned turbine change which immediately preceded the runs at altitudes of 15,000 and 45,000 feet. Performance obtained prior to and following the turbine change is shown in figures 7 and 8. Engine-performance data, obtained at a given operating condition at an altitude of 25,000 feet and a flight Mach number near 0.30 in order to check engine deterioration, are presented in figure 7 in terms of standard engine-performance parameters. The performance decreased slightly during the first 20 hours of operation and then remained essentially constant until the turbine section was replaced. After the replacement, engine performance improved at this particular flight condition. To further illustrate this difference, data from a brief investigation of engine performance at an altitude of 15,000 feet before the turbine change are compared in figure 8(a) with values from a complete performance map taken after the change. In figure 8(b), values from a map taken before the change are compared with some limited data after the change for an altitude of 25,000 feet. Performance at a given turbine temperature level at both altitudes was better after the change by approximately 200 to 300 corrected horsepower. With this marked change considered, the subsequent results and discussion will involve only the performance data obtained between 20 and 82 hours engine time. The data presented herein consequently indicate only the approximate level of performance of this engine model, but the trends are considered typical. Effect of altitude. - Specific effects of altitude on engine performance at a flight Mach number of 0.30 are presented in figure 9. Performance in terms of corrected shaft horsepower, corrected jet thrust, and specific fuel consumption is shown at three temperature levels and several engine speeds. Altitude had a major effect on shaft horsepower and specific fuel consumption, but a minor effect on jet thrust. At a corrected turbine-inlet temperature of 2200° R and an engine speed of 15,500 rpm, corrected shaft horsepower decreased from 2840 horsepower at an altitude of 5000 feet to 2020 horsepower at an altitude of 35,000 feet; corrected jet thrust increased from 660 to 700 pounds, and specific fuel consumption increased from 0.655 to 0.935 pound of fuel per shaft horsepower per hour for the same altitude variation. This change in shaft horsepower, which amounts to 28.8 percent, is primarily a result of the reductions in compressor and turbine efficiencies with altitude (shown in fig. 10). Performance of the compressor and turbine are presented for corrected engine speeds between 14,500 and 16,000 rpm at a corrected turbine-inlet temperature of 22000 R. At a corrected engine speed of 15,500 rpm, an increase in altitude from 5,000 to 35,000 feet resulted in a decrease in compressor efficiency from 74.6 to 71.5 percent and a decrease in turbine efficiency from 81.7 to 77.0 percent. Because at this operating condition the work split between the compressor and the propeller shaft is such that about 2/3 of turbine work is absorbed by the compressor, a small drop in compressor efficiency can impose a large loss in shaft output. If, in addition, the turbine exhibits a drop in efficiency, the loss in shaft power is further increased. The individual contribution of each component to the performance loss with altitude is shown in figure 11. Although the actual gearbox loss varies from approximately 20 to 40 horsepower in this range of altitude, it can be seen that at high altitudes it represents a greater part of the shaft horsepower than at sea level. If the previously quoted reductions in compressor and turbine efficiencies had not occurred as the altitude was increased, the corrected horsepower would be as shown in figure ll(a), while specific fuel consumption would be as shown in figure 11(b). All the variation of performance with altitude has thus been accounted for by the compressor, turbine, and gearbox losses. These effects appear to be typical for turboprop engines and stress the fact that reducing or eliminating altitude effects on engine components is much more important for turboprop engines than for turbojet engines. Effect of flight Mach number. - Some specific effects of flight Mach number on performance at an altitude of 35,000 feet are presented in figures 12 and 13. Brief investigations at flight Mach numbers of 0.349 and 0.513 at this altitude augmented the full performance maps presented in figure 6(d) to (f). The performance at a corrected engine speed of 15,500 rpm over a range of corrected turbine-inlet temperature is shown in figure 12; the variation of performance with several corrected engine speeds at a corrected turbine-inlet temperature of 2300° R is shown in figure 13. As the flight Mach number was increased at either constant corrected engine speed or turbine-inlet temperature, corrected shaft horsepower and jet thrust increased while specific fuel consumption decreased. Specifically, as the flight Mach number was increased from 0.30 to 0.56 at a corrected engine speed of 15,500 rpm and a corrected turbine-inlet temperature of 2400° R, the corrected shaft horsepower increased from 2740 to 3130 horsepower, the corrected jet thrust increased from 810 to 965 pounds, and the specific fuel consumption decreased from 0.810 to 0.695 pound of fuel per shaft horsepower per hour. # Operational Characteristics Windmilling. - The variation of engine windmilling speed with propeller-blade angle is shown in figure 14(a) for an altitude of 15,000 feet and true airspeeds of 66, 110, and 155 knots and in figure 14(b) for an altitude of 35,000 feet and true airspeeds of 115, 165, and 215 knots. Maximum windmilling speed was obtained with a blade angle of approximately 24°, and there appeared to be little effect of altitude on the maximum windmilling speed for any given true airspeed. At that blade angle, an engine windmilling speed in excess of rated speed could be encountered at airspeeds above about 218 knots at any altitude. The variation of corrected air flow with corrected engine speed for the engine in windmilling condition is shown in figure 15. At the rated corrected engine speed of 14,300 rpm, the corrected air flow was 28.9 pounds per second; while at half that corrected speed, the air flow was only 8 pounds per second. Starting. - Examination of the starting characteristics of the engine reveals two distinct regions of operation depending on the fuel system employed, as shown in figure 16. At engine windmilling speeds between 2600 and 3600 rpm, starts with the standard fuel control were made up to an altitude of 21,000 feet, but no starts were obtainable at higher altitudes (fig. 16(a)). The engine fuel was at room temperature, while the engine-inlet temperature was as low as -20° F for these starts. Another fuel control, which allowed much lower starting fuel flows than the standard control, was
installed for the dynamics investigation; use of this fuel control resulted in engine starts at an altitude as high as 35,000 feet and with windmilling speeds as low as 2000 rpm. The engine-inlet temperature was -50° F. Oil foaming. - Engine operation at altitudes above 30,000 feet with PRL 3313 and PRL 3161 oils in the gearbox and power section resulted in foaming and subsequent loss of oil by vent spewing due to reduced scavenge-pump capacity. In one instance the gearbox became loaded with oil and overheated beyond specification limits necessitating replacement of the gearbox. The problem of foaming was alleviated by use of EEL 3A lubricating oil along with pressurization of the gear case above an altitude of 30,000 feet at a gage pressure of about 5 pounds per square inch. # CONCLUSIONS The performance of an XT38-A-2 turboprop engine was investigated at simulated flight conditions ranging from altitudes of 5,000 to 45,000 feet at a flight Mach number of 0.30 and from Mach numbers of 0.301 to 0.557 at an altitude of 35,000 feet. The investigation indicated that the large reductions in corrected shaft horsepower, which occurred when altitude was increased, are due principally to decreases in compressor and turbine efficiencies. An increase in altitude from 5,000 to 35,000 feet at constant corrected turbine-inlet temperature and engine speed resulted in reductions of approximately 3 and 5 percent in compressor and turbine efficiencies, respectively, and a net loss of 28.8 percent in corrected shaft horsepower. At a given flight condition and a fixed corrected turbine-inlet temperature, operating the engine at a corrected engine speed between 13,200 and 14,800 rpm gave the maximum corrected shaft horsepower. Deterioration in engine performance was noted during the first 20 hours of operation, but further operating time had no significant effect on performance. A change of turbine assembly had a marked effect on performance. Maximum windmilling speeds were obtained at a propeller-blade angle of approximately 24° at all airspeeds investigated. Data at altitudes of 15,000 and 35,000 feet indicate that windmilling speeds in excess of rated speed would occur at a true airspeed above 218 knots. Modification of the fuel system to provide fuel flows during starting that were lower than those obtainable with the standard fuel system resulted in a significant increase in the range of altitude and windmilling speed at which ignition could be obtained. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, December 28, 1953 # APPENDIX A # SYMBOLS | 1777 | following | 7 7 | | | • | 1 7 . | | |---------|-------------------------------|---|--------|--------|------|---|----------------| | במיוי | T () () T () T () T () | ammola | 9740 | מסמיני | 7 77 | T 10 1 12 | 700 TO 70 TO 1 | | .1 1165 | I U.I. LUW LIINZ | aviiii) | CLI TO | 110001 | | 111111111111111111111111111111111111111 | 1.64 (1)(1) | | | | ~ | | | | | | A cross-sectional area, sq ft F, jet thrust, 1b g acceleration due to gravity, 32.2 ft/sec2 ghp reduction gear loss, horsepower hp horsepower h enthalpy, Btu/lb J mechanical equivalent of heat, 778 ft-lb/Btu M Mach number N engine speed, rpm P total pressure, lb/sq ft abs p static pressure, lb/sq ft abs Q torque measured by torquemeter, ft-lb R gas constant, 53.4 ft-lb/(lb)(OR) sfc specific fuel consumption, lb fuel/hr/shp shp shaft horsepower TMhp torquemeter horsepower T total temperature, OR V velocity, ft/sec Wa air flow, lb/sec W air-flow leakage from compressor and turbine bearing labryinth, lb/sec Wa,B air-flow leakage from burner-dome rings and cross-over tubes, lb/sec Wa,RB turbine rear-bearing cooling-air flow, lb/sec ``` fuel flow, lb/hr W.p gas flow, lb/sec γ ratio of specific heats δ ratio of compressor-inlet total pressure to static pressure of NACA standard atmosphere at sea level efficiency η ratio of compressor-inlet absolute total temperature to static temperature of NACA standard atmosphere at sea level Subscripts: С compressor j .jet turbine Ò tunnel test-section airstream 1 cowl inlet 2 compressor inlet 3 compressor outlet or combustion-chamber inlet turbine inlet or combustion-chamber outlet 4 5 turbine outlet 6 exhaust nozzle The data are generalized to NACA standard sea-level conditions by the following parameters: F₁/8 corrected jet thrust, 1b ``` F_j/δ corrected jet thrust, lb hp/ $\delta\sqrt{\theta}$ corrected horsepower N/ $\sqrt{\theta}$ corrected engine speed, rpm T_4/θ corrected turbine-inlet temperature, $^{\rm O}{\rm R}$ Wa $\sqrt{\theta}/\delta$ corrected air flow, lb/sec Wf/ $\delta\sqrt{\theta}$ corrected fuel flow, lb/hr #### APPENDIX B #### METHODS OF CALCULATION Shaft horsepower. - The torque, as measured by the torquemeter, together with the measured engine speed was used to determine the torquemeter horsepower as follows: $$TMhp = \frac{2\pi NQ}{33,000}$$ The shaft horsepower was determined from the torquemeter horsepower by subtracting the gearbox losses $$shp = TMhp - ghp$$ where ghp was obtained from calibration curves supplied by the engine manufacturer. Air flow. - Air flow was determined from pressure and temperature measurements in the engine-inlet-air duct (station 1) by use of the equation $$W_{a,1} = A_1 \sqrt{\frac{2g}{R}} \frac{p_1}{\sqrt{T_1}} \sqrt{\left(\frac{\gamma_1}{\gamma_1 - 1}\right) \left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} \left[\left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} - 1\right]}$$ Air leakages occurring in various sections of the power section were measured when possible or were assumed to be a percentage of inlet-air flow. Leakage from the compressor rear-bearing labyrinth and the turbine front-bearing labyrinth $W_{a,ctl}$ was measured and found to be approximately 1 percent of $W_{a,l}$. Leakage from the burner-dome rings and crossover tubes $W_{a,B}$ was assumed to be 1/4 of 1 percent of $W_{a,l}$. The gas flow through the turbine would be determined as $$W_{g,4} = W_{a,1} - W_{a,ctl} - 0.0025W_{a,1} + \frac{W_{f}}{3600}$$ Cooling of the rear turbine bearing is augmented by air coming from ambient conditions through the bearing supports to the bearing and discharging into the gas stream. This inflow $W_{a,RB}$ was found to be 1/2 of 1 percent of $W_{a,1}$. Thus, the exhaust-nozzle gas flow is obtained by $$W_{g,6} = W_{g,4} + 0.005W_{a,1}$$ Temperatures. - Stagnation temperatures obtained from thermocouples were assumed equal to the indicated values except at the exhaust nozzle, where a recovery factor of 0.85 was applied. The turbine-inlet temperature was calculated by assuming the turbine power to be equal to the sum of the compressor absorbed power and the torquemeter horsepower. Thus, $$W_{g,4}(h_4 - h_6) = W_{a,1}(h_3 - h_2) + \frac{550}{J}$$ (TMhp) Then, use of enthalpy charts determined the turbine-inlet temperature (see ref. 2). Jet thrust. - Jet thrust was determined from $$F_{j} = \frac{W_{g,6}}{g} V_{j} = \frac{W_{g,6}}{g} \sqrt{\frac{2\gamma_{6}Rg}{\gamma_{6} - 1} \frac{T_{6}}{\left(\frac{P_{6}}{p_{0}}\right)^{\frac{\gamma_{6} - 1}{\gamma_{6}}}} \left[\left(\frac{P_{6}}{p_{0}}\right)^{\frac{\gamma_{6} - 1}{\gamma_{6}}} - 1\right]}$$ #### REFERENCES - 1. Meyer, Carl L., and Johnson, LaVern A.: Performance and Operational Characteristics of a Python Turbine-Propeller Engine at Simulated Altitude Conditions. NACA RM E51I14, 1952. - 2. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1086 and 1655.) TABLE I. - PERFORMANCE DATA FOR XT38-A-2 TURBOPROP ENGINE | Corrected jet thrust, Fj/62, lb | 512
455
432 | 517
507
501
498 | 527
4855
476
476
518
518
679
679
554
565
708
708
708
708
708
708
708
708
708
708 | 4488
4486
4488
777
70 | 444
444
444 | 44488
84088
84088 | 414
395
365 | 495
539
589
600
636 |
--|----------------------------|--------------------------------------|--|--|---|---|--------------------------------------|--| | cor-
rected
turbine-
inlet
temper-
ature,
T ₄ / ₉ 2, | 1609
1456
1411 | 1880
1791
1705
1628 | 1945
15392
1624
1625
18730
18730
18730
1816
1667
1152
2015
1033
1652
1652
1652
1652 | 1939
1384
1510
1609
1734
1833 | 1951
1355
1474
1628
1786 | 1951
1815
1679
1470
1339 | 1959 | 1508
1609
1726
1803
1959 | | Corrected air flow, 'a,1 \P2\\\22 \langle 22 \langle 22 \langle 12 \rangle 22 \langle 12 \rangle 22 \langle 12 \rangle 22 \langle 12 \rangle 22 \rangle | 29.40
29.61
29.65 | 28.95
28.95
28.94
28.95 | 28 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 30.07
27.92
27.64
27.46
27.75 | 26.63
27.01
26.93
26.77 | 25.57
25.71
25.73
26.04 | 24.49
24.53
24.67
24.97 | 31.04
31.07
31.25
31.28
31.28 | | Corrected
fuel flow,
Wr/527/62,
lb/hr | 983
772
717 | 1407
1263
1136
1020 | 1519
8680
8680
11199
11379
11379
11786
11786
11786
11786
11786
11786
11786
11786
11786
11786
11786
11786
11786
11786 | 1491
658
837
976
1149 | 1446
596
767
987
1212 | 1422
1222
1032
771
571 | 1384
1169
992
781 | 795
967
1167
1283
1542 | | Corrected shaft horse-power, shp/52/62 | 744
196
2 | 1878
1532
1203
900 | 2170
812
832
832
1380
1380
1580
1584
1584
1284
1285
1285
1286
1286
668 | 2116
81
890
925
1331
1705 | 2090
32
476
1001
1529 | 2020
1569
1136
534 | 1933
1481
1069
603 | 147
618
1139
1438
2046 | | Corrected engine speed, N/√6, rpm | 14,617
14,575
14,587 | 14,290
14,290
14,316
14,330 | 14, 030
114, 030
114, 030
115, 045
115, 045
115, 045
115, 088
115, | 13,680
13,729
13,743
13,743
13,781 | 13,443
13,471
13,457
13,420 | 13,121
13,134
13,147
13,147 | 12,836
12,825
12,836
12,861 | 15,564
15,579
15,564
15,564
15,564 | | Jet
thrust,
Fj. | 451
402
381 | 457
448
443
440 | 4 6 4 4 4 4 6 4 4 4 4 6 6 6 6 6 6 6 6 6 | 480
341
393
406
417
418 | 410
317
364
392
394 | 389
376
372
348
302 | 368
350
324 | 296
321
351
357
379 | | Exhaust-
nozzle
total
temper-
ature,
T6, | 1163
1071
1040 | 1360
1300
1230
1180 | 1406
1057
1119
1186
1268
1375
1371
1031
1131
1277
1278
1174
1049
900 | 1443
1021
1121
1184
1257
1338 | 1433
1010
1093
1202
1321 | 1456
1349
1250
1111
1006 | 1472
1355
1256
1136 | 948
1001
1074
1113 | | Turbine-
inlet
total
temper-
ature,
T4, | 1670
1520
1470 | 1963
1870
1773
1690 | 20020
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | 2038
1428
1573
1673
1793 | 2033
1407
1533
1700
1870 | 2047
1900
1753
1535
1393 | 2055 | 1380
14.70
1580
1650 | | Engine
air
flow,
Wa,l, | 25.39
25.57
25.58 | 25.02
25.02
25.02
25.09 | 24404444444444444444444444444444444444 | 25.90
23.91
23.91
25.91
25.91
25.95 | 23.10
23.53
23.36
23.18
23.07 | 222.30
222.30
22.30
23.60
23.60 | 21.26
21.19
21.36
21.69 | 19.39
19.46
19.44
19.44 | | Specific
fuel con-
sumption,
sfc,
lb/hr/shp | 1,322
3,932
322,5 | .749
.824
.944 |
700
8.556
1.075
856
856
856
81.02
1.161
829
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.92
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.93
81.9 | .705
8.082
1.419
1.055
.863 | .692
18.59
1.609
.986 | .704
.779
.909
1.444
21.58 | .716
.789
.928
1.296 | 5.417
1.565
1.025
.892 | | Engine
fuel
flow,
Wf, | 882
696
645 | 1270
1140
1025
918 | 1340
8011
10945
110445
110445
11086
11086
11469
11469
11696
11696
10115
10115 | 1348
590
755
882
1033 | 1307
539
692
892
1099 | 1293
1109
935
699
518 | 1259
1060
900
709 | 455
551
665
730
880 | | Shaft
horse-
power,
shp | 667
177
2 | 1695
1383
1086
810 | 1992
5693
772
1002
1003
1003
1003
1003
1003
1003
100 | | 1890
29
430
905
1386 | 1836
1424
1029
484
24 | 1759
1343
970
547 | 84
352
649
818
1168 | | Engine
speed,
N,
rpm | 14,894 | 14,602 | 14,310 | 14,018 | 13,726 | 13,434 | 13,142 | 14,894 | | Simu-
lated
flight
Mach
number, | 0.295 | 302 | 60000000000000000000000000000000000000 | 30000000000000000000000000000000000000 | 308
308
808
808
808
808 | 808
808
808
808
808 | 308 | 303
302
295
299
299 | | Engine-
inlet
total
temper-
ature,
Tl, | 539
542
541 | 542
546
539
539 | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 541
540
542
542
543 | 888888
4448
48889 | 5445
445
445
445 | 475
474
475
475 | | Compressor-
inlet total
pressure,
lb/sqft abs | 1863
1867
1865 | 1870
1869
1873
1869 | 1871
1861
1861
1881
1881
1863
1863
1872
1865
1865
1866
1869 | 1867
1868
1869
1875
1871 | 1874
1878
1873
1873 | 1880
1878
1876
1878
1882 | 1881
1873
1876
1879 | 1265
1261
1260
1258
1258 | | Tunnel
static
pressure,
Po,
lb/sq ft abs | 1754
1753
1755 | 1758
1757
1759
1754 | 1756
1756
1765
1765
1765
1765
1765
1766
1758
1758
1758 | 1754
1759
1757
1757
1757 | 1757
1759
1757
1756 | 1760
1760
1759
1759 | 1758
1754
1755
1758 | | | Alti-
tude,
ft | 2,000 | | | | | | | 15,000 | | Run | чав | 40.00 | 8801184488 | 2000000 | 322 | 36
38
40
40 | 1444 | 244
64
64
64
64 | TABLE I. - Continued. PERFORMANCE DATA FOR XT38-A-2 TURBOPROP ENGINE | Cor-
rected
- jet
thrust,
Fj/62,
1b | 478
567
583
607
703 | 524
617
617
665
565
568 | 452
517
571
598
647
683 | 659
455
516
526
600 | 449
497
536
586
647 | 591
570
544
492
446 | 662
715
600
610
61 7
627 | 717
610
588
588
588
578 | 752
570
577
605
703 | |---|---|--|---|--|---|--|--|--|--| | Corrected turbine inlet temper-ature, T4/62, OR | 1458
1664
1766
1917
2037
2177 | 1504
1583
1956
2092
2177
1752 | 1434
1596
1839
1952
2116 | 2175
1464
1661
1751
1922
2013 | 1477
1661
1853
2027
2221 | 2189
2110
1977
1730
1524 | 2153
2252
1740
1834
1965
2024 | 2239
2062
1911
1784
1656 | 2351
1723
1879
2094
2266 | | Corrected air flow, $^{\rm M}_{\rm a,l} \gamma^{\rm M} \theta_{\rm g}/\theta_{\rm s},$ $^{\rm I}_{\rm l} / \theta_{\rm g}/\theta_{\rm s}$. | 30.84
30.87
30.86
30.89
30.84 | 30.53
30.53
30.68
30.68
30.28 | 2000
2000
2000
2000
2000
2000
2000
200 | 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 29.17
28.64
28.83
28.82
28.82 | 27.37
27.66
27.98
28.01
27.99 | 31.86
31.85
31.85
31.23
31.43 | 31.12
30.97
31.05
31.34
31.10 | 31.01
30.80
30.69
30.69 | | Corrected
fuel flow,
Wr/627/92,
lb/hr | 716
1058
1241
1455
1657
1899 | 832
942
1537
1756
1900 | 696
959
1350
1521
1769 | 1872
752
1045
1214
1662 | 778
1071
1357
1623
1899 | 1814
1672
1522
1163
839 | 1775
1935
1133
1262
1482
1590 | 1887
1611
1395
1172
978 | 2068
1076
1326
1636
1938 | | Corrected shaft horse-power, shp/62-192 | 54
899
1432
1933
2413 | 353
669
2099
2641
2987
1319 | 137
850
1798
2169
2721
3068 | 2863
385
1084
1488
2075
2360 | 484
1181
1868
2434
3033 | 2892
2607
2273
1463
716 | 1980
2465
310
741
1353
1564 | 2427
1775
1208
530
59 | 2868
345
1077
1975
2616 | | Cor-
rected
engine
speed,
N/1/8,
rpm | 15,259
15,259
15,244
15,288
15,288 | 14,954
14,983
15,026
15,011
14,954
15,011 | 14,677
14,663
14,649
14,649
14,649 | 14,302
14,344
14,316
14,334
14,330 | 13,998
13,998
14,012
14,012 | 13,628
13,694
13,720
13,668
13,068 | 16,160
16,145
16,190
16,175
16,160 | 15,872
15,858
15,858
16,048
15,858 | 15,612
15,684
15,612
15,627
15,526 | | Jet
thrust,
Fj,
1b | 286
339
348
362
390
418 | 289
312
369
397
416
341 | 270
309
341
359
408 | 392
309
315
340
359 | 2897
320
380
387 | 355
340
327
295
267 | 256
276
229
238
238
241 | 277
238
228
228
224 | 293
221
225
236
271 | | Exhaust-
nozzle
total
temper-
ature,
T6,
oR | 915
1036
1098
1173
1261
1356 | 945
989
1209
1302
1356
1083 | 901
989
1145
1226
1327
1385 | 1390
925
1036
1099
1210 | 945
1056
1173
1291 | 1425
1354
1265
1116
985 | 1247
1310
1018
1069
1144
1174 | 1290
1190
1104
1012
969 | 1349
991
1081
1192
1317 | | Turbine-
inlet
total
temper-
ature,
T4' | 1335
1523
1620
1747
1857
1997 | 1377
1443
1775
1903
1993 | 1307
1455
1680
1790
1937
2020 | 2003
1340
1527
1603
1763 | 1360
1530
1703
1863
2037 | 2037
1943
1813
1600
1410 | 1829
1918
1472
1555
1670 |
1894
1748
1620
1478
1404 | 1975
1434
1578
1755
1925 | | Engine air flow, Wa,1, | 19.29
19.25
19.28
19.38
19.08 | 18.89
19.25
19.22
18.95
19.26 | 18.72
18.74
18.74
18.74
18.69 | 18.14
18.52
18.34
18.50
18.50 | 18.20
17.82
17.96
17.97 | 17.03
17.19
17.54
17.45
17.45 | 13.29
13.10
13.22
13.22
13.22
13.15 | 13.08
13.13
13.07
13.36 | 13.19
13.19
13.07
12.07 | | | 15.25
1.177
.867
.753
.687 | 2.353
1.407
.732
.655
.636 | 5.090
1.128
.7507
.7012
.6502 | .6540
1.955
.9646
.8159
.7045 | 1.608
.9069
.7262
.6667 | .627
.6414
.6697
.7948 | . 897
3.651
1.703
1.096 | .777
.908
1.155
2.214
16.62 | .721
3.123
1.231
.828
.741 | | Engine
fuel
flow,
Wf.,
1b/hr | 410
605
710
828
946
1082 | 473
536
876
1000
1089
684 | 397
547
771
873
1011
1095 | 1068
432
600
696
837
921 | 447
614
777
930
1088 | 1050
957
876
670
483 | 633
398
453
527
563 | 671
579
498
414
349 | 739
381
474
584
689 | | Shaft
horse-
power,
shp | 51
514
819
1100
1377
1679 | 201
381
1196
1505
1712
755 | 78
485
1027
1245
1555 | 1633
221
622
853
1188
1354 | 278
677
1070
1395
1738 | 1675
1492
1308
843
412 | 706
878
109
266
481
554 | 863
638
431
187
21 | 1025
122
385
705
930 | | Engine
speed,
N,
rpm | 14,602 | 14,310 | 14,018 | 13,726 | 13,434 | 13,142 | 14,894 | 14,602 | 14,310 | | Simu-
lated
filght
Mach
number, | 0.297
306
302
202
203
303 | 88994
88994
88994
88994 | 00000000000000000000000000000000000000 | 8888888
8888888
8888888 | .306
.299
.302
.302 | 306
306
302
303
312 | 287
287
280
280
280 | 99999999999999999999999999999999999999 | . 302
. 292
. 302
. 297 | | Engine-
total
temper-
ature,
Tl, | 44444
87444
87444
8749
8749
8749 | 44444
277
277
277
277 | 444444
8774
884
884
884
884
884
884
884 | 444444
7777
7777
7077
7077 | 478
478
477
477 | 483
478
476
480
480 | 444
444
441
441
441 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 436
432
4336
4435 | | Compressor-
inlet total
pressure,
P2,
lb/sq ft abs | 1266
1264
1264
1261
1265 | 1258
1261
1266
1264
1267 | 1263
1264
1269
1263
1263 | 1258
1270
1267
1268
1265 | 1267
1263
1264
1265
1265 | 1270
1262
1271
1268
1267 | 819
817
808
825
816
813 | 818
820
820
821
821 | 825
821
825
825
816 | | Tunnel static pressure, Po, lb/sq ft abs | 1191
1185
1187
1187
1183 | 1179
1183
1190
1189
1190 | 1186
1187
1192
1192
1187 | 1179
1189
1189
1187
1187 | 1187
1184
1188
1188 | 1190
1183
1193
1189 | 778
774
763
781
773 | 771
780
771
773 | 775
774
775
776 | | Alti-
tude,
ft | 15,000 | | | | | · · · · · · · · · · · · · · · · · · · | 25,000 | | | | Run | 02 02 02 02 02 02 02 02 02 02 02 02 02 0 | 559
60
61 | 88
48
60
79
79 | 68
69
77
72
73 | 74
75
77
77
78 | 79
80
82
83 | 48
88
7
88
88
88 | 90
92
93 | 96
98
99 | TABLE I. - Continued. PERFORMANCE DATA FOR XT38-A-2 TURBOPROP ENGINE | | | | | | | \ | | | |--|--|---|---------------------------------------|---|--|---|--|---| | Cor-
rected
jet
thrust,
Fj/82,
lb | 733
710
650
587
562
562
555 | 722
673
562
544
546 | 528
559
637
550 | 632
718
606
747
647
607 | 785
851
686
647
636
583 | 858
577
582
608
700
785 | 858
693
613
568
550 | 545
568
736
786
521 | | Corrected turbine-
temper-
ature,
T_4/θ_2 , | 2387
2247
2143
1974
1816 | 2372
2226
2036
1834
1659 | 1809
2020
2181
1654 | 1897
22112
22119
18449
2143
1995
1766 | 2306
2417
2113
2011
1810
1724 | 2491
1714
1865
1966
2204
2330
1675 | 2515
2341
2197
1954
1773 | 1742
1886
2019
2306
2444
1620 | | Corrected air flow, $M_{a,1}^{\gamma} 1^{\gamma} \frac{\partial^{2}}{\partial z^{\prime}} \delta_{z}^{\prime}$, $1^{\lambda} \beta_{z}^{\gamma} \delta_{z}^{\prime}$, $1^{\lambda} \beta_{z}^{\gamma} \delta_{z}^{\prime}$, | 30.48
30.90
30.74
30.63
30.73
30.73 | 30.22
29.96
29.96
29.95 | 29.60
29.61
29.61
29.33 | 31.42
31.36
31.35
31.59
31.59
31.46
31.46 | 31.18
31.63
31.45
31.06
31.50 | 30.98
30.63
30.63
30.96
30.74
30.74 | 30.57
30.53
30.64
30.15
30.58 | 20.00
20.00
20.00
80.00
80.00 | | Corrected fuel flow, $^{V_{1}/\delta_{2}\sqrt{\theta_{2}}},$ $^{I_{1}ow}$ | 2144
1899
1742
1489
1249
1006 | 2115
1858
1580
1293
1019 | 1601
1588
1807
1019 | 1460
1777
1948
1346
2034
1777
1574
1206 | 2074
2255
1783
1619
1320
1136 | 2400
1169
1408
1638
1901
2103 | 2404
2114
1898
1549
1220
1048 | 1214
1433
1626
2059
2249
999 | | Corrected shaft horsepower, power, shp/527/82 | 3127
2666
2297
1634
967
301 | 5113
2618
1987
1189
478 | 1301
2044
2554
509 | 601
1488
1845
316
2225
1648
1139
85 | 2309
2710
1591
1173
344
49 | 3017
103
729
825
2021
2473
54 | 3180
2578
2090
1186
674 | 425
1002
1568
2593
2993 | | Corrected engine speed, N/ \(\frac{1}{\pi} \), rpm | 15,280
15,350
15,350
15,350
15,350 | 15,057
14,975
14,989
14,989 | 14,576
14,670
14,630
14,643 | 16,264
116,264
116,309
116,100
116,100
116,120
116,130
116,130 | 15,931
15,931
15,931
15,916
15,931
15,829 | 15,655
15,598
15,598
15,541
15,655
15,627
15,526 | 15,336
15,336
15,336
15,284
15,224
15,224 | 14,989
15,016
14,961
14,989
14,989 | | Jet
thrust,
Fj,
lb | 285
274
253
219
216 | 280
261
219
211 | 206
217
248
214 | 155
162
175
181
181
153
153 | 190
206
168
158
142 | 210
141
142
142
172
190 | 209
191
169
150
139 | 133
142
142
182
194
127 | | Exhaust-
nozzle
total
temper-
ature,
T6,
oR | 1576
1282
1221
1124
1040
958 | 1357
1284
1170
1057
963 | 1059
1162
1266
970 | 1100
1218
1281
1339
1234
1166
1067 | 1337
1405
1234
1173
1058
1021 | 1451
1009
1089
1180
1272
1350 | 1467
1362
1274
1142
1044
976 | 1025
1101
1181
1343
1428
959 | | Turbine-
inlet
total
temper-
ature,
T4, | 2010
1875
1788
1647
1515 | 1970
1870
1710
1537
1390 | 1537
1693
1840
1393 | 1590
1770
1860
1543
1947
1683
1568 | 1937
2030
1780
1693
1520
1468 | 2083
1443
1570
1667
1943
1953 | 2103
1957
1837
1627
1503 | 1460
1577
1700
1933
2048
1370 | | Engine
air
flow,
Wa,l'
lb/sec | 12.92
13.05
13.09
13.14
13.10 | 12.87
12.67
12.70
12.68
12.69 | 12.53
12.57
12.55
12.45 | 8888888888
44649
546648888
5666
5666
5666
5666
5666
5666 | 8.23
8.40
8.27
8.27
8.38 | 8.29
8.16
8.14
8.32
8.13 | 8.19
8.17
8.17
8.09 | 8.05
7.90
8.10
8.09
7.90 | | Specific
fuel con-
sumption,
sfc,
lb/hr/shp | 0.686
.757
.911
1.291
3.346 | .679
.710
.796
1.088
2.129 | .993
.777
.708
2.000 | 2.430
1.194
1.056
4.254
1.078
1.382
1.382
1.4.21 | .832
1.120
1.380
3.831
23.18 | .796
11.39
1.933
1.984
.941
.850 | .7560
.8201
.9077
1.306
1.809 | 2.853
1.429
1.037
794
752 | | Engine
fuel
flow,
Wf',
lb/hr | 765
669
619
533
358 | 748
660
564
459
362 | 465
565
646
364 | 328
435
302
302
4534
4601
351
204 | 004
004
000
005
005
005
005
005
005
005 | 2537
315
315
466
2466 | 539
474
473
346
275
235 | 271
323
363
466
508
224 | | Shaft
horse-
power,
shp | 1116
939
816
585
344 | 1101
930
709
422
170 | 468
727
913
182 | 135
335
412
71
71
272
254
112 | 512
601
357
263
77 | 675
163
185
454
548 | 713
578
466
265
152
12 | 95
226
350
587
676
12 | | Engine
speed,
N,
rpm | 14,018 | 13,726 | 13,434 | 14,894 | 14,602 | 14,310 | 14,018 | 13,726 | | Simu-
lated
flight
Mach
number, |
0.297
202
202
2037
2937
2955 | 2002
2002
2002
2005
2005 | 295
295
295
295 | 60000000000000000000000000000000000000 | 306
308
308
308
295
295 | 308
303
303
303
306
295 | 2003
2003
2003
2003
2003 | 295
202
299
302
302 | | Engine-
inlet
total
temper-
ature,
Tl, | 444444
688844
7888884
44 | 44444444444444444444444444444444444444 | 441
435
438
437 | 4444444
6000046000
9000460000 | 44444
888
888
7884
888 | 44444444444444444444444444444444444444 | 44444
88844
44880
900 | 4 4 4 3 3 4 4 4 4 3 3 5 4 4 4 3 5 5 4 4 3 5 5 5 5 | | Compressor-
inlet total
pressure,
P2,
1b/sq ft abs | 823
823
823
824
824 | 821
820
824
820
821 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 519
520
520
516
520
513
514
519 | 512
512
518
517
516
516 | 518
517
516
515
520
512
514 | 519
519
518
518
518 | 516
522
515
523
522
516 | | Tunnel static pressure, Po, 1b/sq ft abs | 774
770
773
780
776 | 775
775
771
771 | 778
773
776 | 4444444444688869898989898 | 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 | 4884
4886
4887
4886
5886
5886 | 486
490
484
491
490
484 | | Alti-
tude,
ft | 25,000 | | | 35,000 | | | | | | Run | 1001
1001
1004
1004 | 106
107
108
109
110 | 111
112
113
114 | 115
1118
1118
1120
1221
123 | 125
125
125
128
128 | 130
132
133
133
135
135 | 138
138
139
140
141 | 143
144
145
146
147 | TABLE I. - Continued. PERFORMANCE DATA FOR XT38-A-2 TURBOPROP ENGINE | Cor-
rected
jet
thrust,
Fj ⁶ 2,
lb | 709
609
573
562
529 | 749
682
617 | 850
774
662 | 868
838
738 | 601
604
656
729
824 | 907
837
745
627
600 | 888
571
603
648
735 | 867
789
765
641
586 | 532
566
637
738
832 | 735
667
624
558
517 | 947
862
741 | 909
831 | 943
888
790 | |---|--|----------------------------|----------------------------|----------------------------|---|--|--|--|--------------------------------------|--|----------------------------|------------------|----------------------------| | Cor-
rected
turbine-
inlet
temper-
ature,
T ₄ /82, | 2276
2124
1989
1882
1730 | 2216
2123
2025 | 2398
2257
2078 | 2476
2584
2213 | 1698
1808
1969
2108
2214 | 2465
2306
2144
1950
1770 | 2453
1641
1837
1991
2149
2302 | 2447
2293
2208
2000
1854
1615 | 1619
1818
2007
2196
2381 | 2239
2066
1991
1856
1590 | 2431
2232
2024 | 2339
2237 | 2485
2366
2237 | | Corrected
air flow,
Wa,1 4 02/62,
1b/sec | 29.68
29.60
29.11
29.10 | 31.53
31.25
31.39 | 31.39
31.34
31.42 | 31.27
31.32
30.97 | 31.65
31.20
31.60
31.26
31.26 | 31.25
31.10
30.94
31.37
31.60 | 31.67
30.83
31.22
31.22
31.22
31.22 | 30.57
30.37
30.51
30.55
29.99 | 30.08
30.28
29.93
30.43 | 29.61
30.05
30.09
29.76
29.48 | 31.50
32.08
31.26 | 30.84 | 30.81
30.84
30.71 | | Corrected fuel flow, $^{\rm W}_{\rm f}/^{\rm f_2}\sqrt{^{\rm g_2}},$ lb/hr | 1960
1787
1569
1428
1184 | 1912
1762
1627 | 2220
1967
1720 | 2354
2177
1892 | 1099
1286
1528
1754 | 2288
2013
1760
1480
1194 | 2263
1003
1314
1557
1795
2026 | 2303
2026
1879
1597
1369
982 | 1009
1338
1607
1870
2187 | 1927
1658
1563
1388
941 | 2138
1921
1594 | 2068 | 2350
2129
1905 | | Corrected shaft horse-power, shp/52/92 | 2464
2009
1498
1102
480 | 1997
1668
1276 | 2751
2213
1346 | 3191
2814
2190 | 45
519
1164
1754
2143 | 2928
2402
1836
1088
390 | 3164
116
955
1578
2147
2615 | 3264
2693
2385
1705
1097
115 | 269
1101
1843
2405
3078 | 2583
2020
1783
1245
205 | 3060
2347
1618 | 2822
2516 | 3447
3052
2516 | | Cor-
ected
ingine
ipeed,
I/ $\sqrt{\theta}$,
rpm | 14,710
14,670
14,656
14,630 | 16,264
16,294
16,294 | 15,945
15,989
16,004 | 15,655
15,655
15,655 | 16,175
16,145
16,264
16,100 | 16,018
16,004
15,975
16,004
15,989 | 15,584
15,584
15,598
15,584
15,584
15,584 | 15,125
15,125
15,196
15,181
15,139 | 14,838
14,838
14,838
14,810 | 14,562
14,495
14,630
14,643
14,576 | 15,916
15,902
15,931 | 15,627
15,627 | 15,308
15,308
15,336 | | Jet
thrust, r
Fj, e
1b | 174
150
141
139
131 | 193
174
156 | 215
196
167 | 221
213
187 | 158
159
173
191
217 | 238
194
163
158 | 233
150
159
170
193
209 | 232
208
200
167
154
142 | 139
169
195
219 | 193
175
163
145
137 | 263
205 | 254
230 | 262
246
215 | | Exhaust-
nozzle
total
temper-
ature,
T ₆ , | 1323
1241
1168
1113
1026 | 1267
1211
1159 | 1381
1293
1201 | 1427
1374
1271 | 992
1056
1122
1232
1289 | 1407
1316
1224
1110
1012 | 1429
953
1058
1147
1241 | 1457
1362
1292
1169
1096 | 963
1071
1181
1302
1427 | 1323
1230
1159
1079
936 | 1404
1289
1156 | 1340 | 1435
1357
1279 | | Turbine-
inlet
total
temper-
ature;
T4, | 1899
1780
1671
1588
1498 | 1857
1775
1693 | 2010
1883
1730 | 2070
1993
1850 | 1440
1540
1650
1803
1890 | 2047
1920
1793
1623 | 2070
1385
1547
1680
1813
1947 | 2103
1970
1880
1707
1590
1385 | 1385
1555
1717
1887
2055 | 1907
1775
1680
1563
1350 | 2047
1883
1700 | 1960 | 2083
1983
1870 | | Engine
air
flow,
Wa,l,
lb/sec | 7.97
7.96
7.82
7.83 | 8.87
8.72
8.68 | 8.69
8.69 | 8.71
8.71
8.58 | 9.03
9.90
9.10
9.11 | 8.993
9.037
8.813
8.937
9.108 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 88.57
88.53
88.53
88.53 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 9.54
9.64
9.43 | 9.49 | 9.35
9.33 | | Specific
fuel con-
sumption,
sfc,
lb/hr/shp | 0.795
.890
1.047
1.296
2.468 | .9575
1.057
1.275 | .8069
.8887
1.277 | .7376
.7737
.8639 | 24.18
2.484
1.313
1.012 | .7814
.8382
.9588
1.360
3.053 | .7152
8.643
1.377
.9868
.836 | .7523
.7878
.9366
1.247 | 3.754
1.215
.8717
.7776 | .7460
.8208
.8762
1.114 | .6987
.8185 | .7327 | .6819
.7022
.7572 | | Engine
fuel
flow,
Wf,
lb/hr | 439
403
354
324
269 | 451
411
376 | 514
455
396 | 548
506
438 | 22
312
369
425
765
765 | 547
487
419
351
287 | 242
242
2418
272
275
88
88 | 2544455
25855
25855
25855
25855
25855 | 244
328
394
458
535 | 467
403
375
331
230 | 545
487
404 | 529
485 | 598
540
474 | | Shaft
horse-
power,
shp | 552
453
338
250
109 | 471
389
295 | 637
512
310 | 743
654
507 | 11
126
281
420
521 | 700
581
258
94 | 762
28
231
380
518
630 | 809
658
575
410
267
28 | 65
452
589
753 | 626
491
428
297
50 | 780
595
4 10 | 722
638 | 877
769
6 26 | | Engine
speed,
N,
rpm | 13,434 | 14,894 | 14,602 | 14,310 | 14,894 | 14,602 | 14,310 | 14,018 | 13,726 | 13,434 | 14,602 | 14,310 | 14,018 | | Simu-
lated
filght
Mach
number, | 0.302
.297
.302
.306 | .346
.348 | .348 | .359
.355 | 435
435
446
435 | 444
4444
4438
853
853 | 4440
4455
4450
4440
4255
4254
7240 | 442
435
437
423
425
425 | 4537
7447
7442
7444 | .440
.432
.438
.438 | .509
.504 | .524 | .524
.524
.499 | | Engine-
inlet
total
temper-
ature,
T ₁ , | 433
435
436
438
437 | 435
434
434 | 435
433
432 | 434
434
434 | 444
444
444
444
3 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 438
438
433
438
438 | 44444
644444
645
645
645
645
645
645
645 | 4 4 4 4 4
4 4 4 4 4
4 4 4 6 8 | 448
446
4437
4437 | 437
438
436 | 435
435 | 435
435
434 | | Compressor-
inlet total
pressure,
P2,
lb/sq ft abs | 519
521
523
523
524 | 545
540
535 | 535
536
534 | 539
538
536 | 556
557
558
554
557 | 555
561
551
550
557 | លល់ សូស ស
សូស សូស ស
សូស សូស ស
4 | 566
558
551
556
556
556 | 553
561
561
559
557 | 555
555
550
561 | 588
584
585 | 591
586 | 588
586
576 | | Tunnel
static
pressure,
Po,
lb/sq ft abs | 487
490
489
490
490 | 502
497
490 | 493
493
893 | 4
493
593
593 | 468
469
489
488
488 | 488
490
483
483 | 4 4 4 4 8 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4 4 4
4 4 4 4 4 9 5 5 5 5 5 5 5 | 4 85
4 91
4 88
4 88
4 85 | 484
488
488
482
582
583 | 493
493
493 | 490 | 488
486
486 | | Alti-
tude,
ft | 35,000 | | | | | | | | | | | | | | Run | 149
150
151
152
152 | 154
155
156 | 157
158
159 | 160
161
162 | 163
164
165
166
166 | 168
169
170
171 | 175
175
176
176 | 180
181
182
183 | 185
185
187
188
189 | 190
192
193
194 | 195
196
197 | 198 | 8558
8888 | | ENGINE | | |-------------------------------|--| | 2 TURBOPROP ENGINE | | | XT38-A-2 | | | FOR | | | NCE DATA FOR | | | PERFORMANCE DATA FOR XT38-A-2 | | | - Concluded. | | | i | | | TABLE | | | ٠. | | | | | | | | | | | | |----|--|--|---|--|--|---------------------------------------|---|---|--|--|--| | | Corrected jet thrust, $F_{\rm J}/\delta_2$, lb | 602
637
802
869
904 | 903
830
759
618
590
567 | 1018
996
606
696
817
924 | 931
556
578
688
767
848 | 855
773
710
581
543 | 698
697
584
541
516 | 776
634
631
650
671
752 | 633
638
703
687
782
857 | 676
771
882
676
635
630
616 | 615
658
665
762
831
572 | | | Cor-
rected
turbine-
inlet
temper-
ature,
T4/02, | 1693
1810
1970
2125
2191 | 2323
2106
1934
1790
1696
1557 | 2468
2462
1754
1892
2115
2303 | 2431
1552
1722
1948
2121
2296 | 2306
2153
1975
1767
1512 | 2197
2058
1823
1534
1457 | 2288
1750
1820
1939
2049
2182 | 1761
1905
2099
2174
2296
2431 | 2139
2312
2492
2197
2013
1891
1734 | 1930
2059
2169
2283
2427
1679 | | | Corrected
air flow,
Wa,l \P2/62,
lb/sec | 30.99
30.98
32.31
31.96 | 29.84
31.22
31.27
30.97
30.93 | 30.94
31.02
30.97
31.28
30.97
31.30 | 31.14
30.82
30.16
30.07
30.80 | 29.89
30.01
29.98
30.11 | 28.90
28.75
29.75
29.54 | 31.45
31.15
31.23
31.22
31.43 | 31.51
30.71
31.52
30.63
31.45 | 30.53
31.41
31.41
30.04
30.01
30.84
31.53 | 29.85
30.54
29.95
30.63
30.69 | | | Corrected
fuel flow,
Wf/627/92,
lb/hr | 1140
1338
1549
1782
1929 | 2056
1764
1491
1289
1141
915 | 2320
2271
1194
1405
1722
2040 | 2264
846
1153
1153
1776
2002 | 2068
1807
1546
1255 | 1880
1658
1305
1093 | 2069
1192
1313
1521
1666
1926 | 1212
1428
1729
1886
2128 | 1806
2114
2438
1875
1580
1175 | 1482
1682
1869
2091
2345
1099 | | | Corrected shaft horse-power, shp/62~62 | 501
1068
1545
2106
2401 | 2838
2142
1544
1037
664 | 3389
3343
857
1431
2194
2845 | 3344
46
834
1691
2285
2868 | 3072
2566
2009
1255
205 | 2750
2313
1524
874 | 2209
153
525
525
990
1356
1919 | 355
925
1588
1886
2313
2714 | 1770
2518
3086
1957
1321
915 | 1181
1690
2016
2471
2917
156 | | | Corrected engine speed, N/ $\sqrt{\theta}$, rpm | 15,817
15,773
15,907
15,847
15,788 | 15,639
15,580
15,566
15,537
15,507
15,522 | 15,612
15,469
15,469
15,469
15,469 | 15,196
15,280
15,280
15,280
15,266
15,266 | 14,632
14,604
14,591
14,591 | 14,226
14,213
14,213
14,223 | 16,175
16,220
16,175
16,190
16,190
16,175 | 15,858
15,931
15,872
15,843
15,858 | 15,627
15,541
15,541
15,541
15,551
15,555
15,541 | 15,210
15,266
15,210
15,210
15,196
15,294 | | | Jet
thrust,
Fj,
1b | 170
180
229
248
256 | 262
237
216
175
167 | 295
287
202
236
268 | 267
159
164
219
244 | 247
222
204
166 | 199
199
169
152
144 | 114
95
94
97
112 | 93
103
102
115 | 101
1114
130
99
93 | 91
98
113
123
84 | | | Exhaust-
nozzle
total
temper-
ature,
T6,
oR | 1023
1102
1174
1272
1334 | 1383
1263
1158
1074
1025
946 | 1435
1440
1017
1109
1228
1347 | 1428
895
983
1115
1219 | 1401
1304
1197
1069
922 | 1355
1267
1121
1021
905 | 1325
1009
1049
1114
1178 | 1019
1088
1217
1263
1338 | 1228
1352
1462
1282
1166
1098 | 1137
1193
1269
1439
1439 | | | Turbine
inlet
total
temper-
ature,
T4, | 1500
1615
1727
1875
1950 | 2027
1850
1703
1580
1503 | 2090
2097
1500
1633
1809 | 2070
1307
1450
1640
1790
1937 | 2030
1900
1747
1563 | 1960
1840
1630
1371 | 1940
1477
1543
1640
1733 | 1493
1600
1775
1847
2047 | 1793
1960
2113
1863
1703
1603 | 1640
1737
1843
1940
2067
1410 | | | Engine
air
flow,
Wa,l' | 9.29
9.27
9.85
9.51 | 9.72
9.51
9.48
9.33 | 9.78
9.69
9.67
9.77
9.67 | 99.99.99.99.32.24.24.24.24.24.24.24.24.24.24.24.24.24 | 9.20
9.18
9.16
9.14 | 8.72
8.70
8.80
8.77
8.75 | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 0.40.00.00.00.00.00.00.00.00.00.00.00.00 | 40.03
44.44
40.03
40.03
60.03 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | Specific
fuel con-
sumption,
sfc,
lb/hr/shp | 2.278
1.253
1.002
.8460 | .7243
.8237
.9660
1.243
1.718
40.50 | .6844
.6794
1.393
.9819
.7850 | .6768
18.500
1.382
.8733
.7596 | .6731
.7042
.7698
1.000 | .6838
.7166
.8537
1.250
8.360 | .9365
7.810
2.500
1.537
1.228 | 3.417
1.544
1.089
1.000
1.920 | 1.021
.840
.790
.958
1.197
1.553 | 1.255
.9957
.9270
.8462
.8040 | | | Engine
fuel
flow,
Wf, | 303
357
414
478
515 | 557
472
398
343
204
243 | 616
604
319
379
460
545 | 2222
2322
2322
2326
2526 | 560
488
418
337
223 | 506
256
290
209 | 280
164
180
226
226 | 164
193
258
288
316 | 247
288
331
253
213
191
158 | 202
230
254
286
320
148 | | | Shaft
horse-
power,
shp | 133
285
413
565
641 | 769
573
412
276
177 | 900
888
888
3886
760 | 885
12
217
4442
599
758 | 832
693
343
543
43 | 740
621
417
232
25 | 299
21
72
136
184
263 | 125
125
214
258
313 | 242
242
419
1764
123 | 161
231
274
338
398
21 | | | Engine
speed,
N,
rpm | 14,894 | 14,602 | 14,310 | 14,018 | 13,726 | 13,434 | 14,894 | 14,602 | 14,310 | 14,018 | | | Simu-
lated
filght
Mach
number, | 0.548
.550
.572
.572 | 25.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | .589
.584
.581
.581 | 828.
828.
438.
438. | .576
.567
.561
.552 | .570
.565
.552
.552 | 283
283
283
283
264
265
265
265
265
265
265
265
265
265
265 | 286
202
286
276
292 | 283
2892
2892
286
276
278 | 292
299
308
292
292 | | | Engine-
inlet
total
temper-
ature,
T ₁ , | 460
463
455
458 | 453
456
457
458
460
459 | 444
444
444
444
444 | 4444422
72444447
724448 | 455
458
459
459 | 463
464
464
464 | 444444
4440
6440
6490
040 | 440
436
439
441
440 | 4444444
8444844
8000800 | 444
438
4441
4422
356 | | | Compressor-
inlet total
pressure,
P2,
lb/sq ft abs | 597
598
504
599 | 8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 613
610
611
611
611 | 6005
6005
6004
6004
609 | 601
608
808
804
802 | 8 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 311
313
315
316
312
315 | 312
312
314
314
311 | 316
312
312
310
310
309
309 | 313
315
318
318
313 | | | Tunnel
static
pressure,
Po,
lb/sq ft abs | 483
483
484
494 | 44444
991
48855
8875
888 | 4 4 4 4 4 4 4 8 8 8 4 4 4 4 8 8 8 8 8 8 | 44444
886
886
789
090 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4
8 8 8 8 8
4 4 4 6 6 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 | 299
313
313
313
313
313 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | Alti-
tude,
ft | 35,000 | | | | | | 45,000 | | | | | | Rùn | 203
204
205
205
206 | 208
210
211
212
212 | 215
215
216
217
218 | 00000000000000000000000000000000000000 | 000000
30000
30000 | 0.0000
0.0000
1.00000 | 223
233
240
240
241
241
241
241 | 0000000
444444
084000 | 00000000000000000000000000000000000000 | 255
255
255
255
255
255
255
255
255
255 | (a) Side view. Figure 1. - Installation of XT38 turboprop engine in wind tunnel. (b) Front view.
Figure 1. - Concluded. Installation of XT38 turboprop engine in wind tunnel. Figure 2. - Cross section of turboprop engine showing location of components and measuring stations. Integrating total_pressure probes Figure 3. - Schematic diagrams of instrumentation stations viewed from upstream. (e) Station 5, turbine outlet. (f) Station 6, exhaust nozzle. (a) Corrected turbine-inlet temperature. Figure 4. - Effect of corrected shaft horsepower on engine performance at various engine speeds. Altitude, 15,000 feet; flight Mach number, 0.303. Figure 4. - Concluded. Effect of corrected shaft horsepower on engine performance at various engine speeds. Altitude, 15,000 feet; flight Mach number, 0.303. Figure 5. - Effect of corrected engine speed on corrected air flow. Altitude, 15,000 feet; flight Mach number, 0.303. (a) Altitude, 5000 feet; flight Mach number, 0.30. Figure 6. - Engine-performance map. (b) Altitude, 15,000 feet; flight Mach number, 0.303. Figure 6. - Continued. Engine-performance map. (c) Altitude, 25,000 feet; flight Mach number, 0.291. Figure 6. - Continued. Engine-performance map. (d) Altitude, 35,000 feet; flight Mach number, 0.301. Figure 6. - Continued. Engine-performance map. (e) Altitude, 35,000 feet; flight Mach number, 0.438. Figure 6. - Continued. Engine-performance map. (f) Altitude, 35,000 feet; flight Mach number, 0.557. Figure 6. - Continued. Engine-performance map. (g) Altitude, 45,000 feet; flight Mach number, 0.294. Figure 6. - Concluded. Engine-performance map. Figure 7, - Effect of engine time on engine performance. Altitude, 25,000 feet; flight Mach number, 0.29; average corrected engine speed, 15,110 rpm; average corrected turbine-inlet temperature, 21850 R. Figure 8. - Effect of turbine change on engine performance. Corrected engine speed, 15,610 rpm. (a) Corrected shaft horsepower. Figure 9. - Effect of altitude on engine performance. Flight Mach number, 0.30. Figure 9. - Concluded. Effect of altitude on engine performance. Flight Mach number, 0.30. Figure 10. - Effect of altitude on compressor and turbine efficiency. Flight Mach number, 0.30; corrected turbine-inlet temperature, 2200° R. (b) Specific fuel consumption. Figure 11. - Effect of component performance on engine performance; corrected engine speed, 15,500 rpm, corrected turbine-inlet temperature, 2200° R; flight Mach number, 0.30. Figure 12. - Effect of flight Mach number on engine performance. Altitude, 35,000 feet; corrected engine speed, $N/\sqrt{\theta_2}$, 15,500 rpm. (c) Specific fuel consumption. Figure 13. - Effect of flight Mach number on engine performance. Altitude, 35,000 feet; corrected turbine-inlet temperature, T_4/θ_2 , 23000 R. Figure 14. - Effect of blade angle on windmilling speed at various true airspeeds. Figure 15. - Variation of corrected air flow with corrected engine speed for engine in windmilling condition. (b) Operation with second fuel control. Figure 16. - Effect of altitude, windmilling engine speed, and fuel system on engine starts.